首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   2篇
  国内免费   1篇
测绘学   6篇
大气科学   4篇
地球物理   27篇
地质学   62篇
海洋学   8篇
天文学   11篇
综合类   1篇
自然地理   2篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   6篇
  2016年   3篇
  2015年   6篇
  2014年   2篇
  2013年   10篇
  2012年   9篇
  2011年   6篇
  2010年   5篇
  2009年   12篇
  2008年   10篇
  2007年   6篇
  2006年   6篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  1999年   2篇
  1995年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有121条查询结果,搜索用时 312 毫秒
1.
The recent improvements in the Gravity Recovery And Climate Experiment (GRACE) tracking data processing at GeoForschungsZentrum Potsdam (GFZ) and Groupe de Recherche de Géodésie Spatiale (GRGS) Toulouse, the availability of newer surface gravity data sets in the Arctic, Antarctica and North-America, and the availability of a new mean sea surface height model from altimetry processing at GFZ gave rise to the generation of two new global gravity field models. The first, EIGEN-GL04S1, a satellite-only model complete to degree and order 150 in terms of spherical harmonics, was derived by combination of the latest GFZ Potsdam GRACE-only (EIGEN-GRACE04S) and GRGS Toulouse GRACE/LAGEOS (EIGEN-GL04S) mean field solutions. The second, EIGEN-GL04S1 was combined with surface gravity data from altimetry over the oceans and gravimetry over the continents to derive a new high-resolution global gravity field model called EIGEN-GL04C. This model is complete to degree and order 360 and thus resolves geoid and gravity anomalies at half- wavelengths of 55 km at the equator. A degree-dependent combination method has been applied in order to preserve the high accuracy from the GRACE satellite data in the lower frequency band of the geopotential and to form a smooth transition to the high-frequency information coming from the surface data. Compared to pre-CHAMP global high-resolution models, the accuracy was improved at a spatial resolution of 200 km (half-wavelength) by one order of magnitude to 3 cm in terms of geoid heights. The accuracy of this model (i.e. the commission error) at its full spatial resolution is estimated to be 15 cm. The model shows a reduced artificial meridional striping and an increased correlation of EIGEN-GL04C-derived geostrophic meridional currents with World Ocean Atlas 2001 (WOA01) data. These improvements have led to select EIGEN-GL04C for JASON-1 satellite altimeter data reprocessing. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
2.
3.
Sr and Nd isotopic compositions of one trachyte, eight phonolites and five basalts have been measured. The isotopic characteristics of the trachyte can be explained by a combined assimilation–fractional crystallization process within an upper crustal magmatic chamber. Some phonolites display isotopic signatures identical to basalts, suggesting that they have been protected against any crustal assimilation during their formation. Some others have low Sr contents, whereas they are enriched in radiogenic Sr (0.70451<87Sr/86Sri<0.71192), and display basaltic 143Nd/144Nd ratios. Both observations could be explained by very strong alkali feldspar fractionation and by subsequent very low assimilation of surrounding rocks (between 0.3 and 4%) during intrusion. To cite this article: J.-M. Dautria et al., C. R. Geoscience 336 (2004).  相似文献   
4.
In this paper, numerical and analytical methods are used to evaluate the ultimate pullout capacity of a group of square anchor plates in row or square configurations, installed horizontally in dense sand. The elasto-plastic numerical study of square anchor plates is carried out using three-dimensional finite element analysis. The soil is modeled by an elasto-plastic model with a Mohr–Coulomb yield criterion. An analytical method based on a simplified three-dimensional failure mechanism is developed in this study. The interference effect is evaluated by group efficiency η, defined as the ratio of the ultimate pullout capacity of group of N anchor plates to that of a single isolated plate multiplied by number of plates. The variation of the group efficiency η was computed with respect to change in the spacing between plates. Results of the analyses show that the spacing between the plates, the internal friction angle of soil and the installation depth are the most important parameters influencing the group efficiency. New equations are developed in this study to evaluate the group efficiency of square anchor plates embedded horizontally in sand at shallow depth (H = 4B). The results obtained by numerical and analytical solutions are in excellent agreement.  相似文献   
5.
The GRACE satellite mission has been measuring the Earth's gravity field and its temporal variations since 2002 April. Although these variations are mainly due to mass transfer within the geofluid envelops, they also result from mass displacements associated with phenomena including glacial isostatic adjustment and earthquakes. However, these last contributions are difficult to isolate because of the presence of noise and of geofluid signals, and because of GRACE's coarse spatial resolution (>400 km half-wavelength). In this paper, we show that a wavelet analysis on the sphere helps to retrieve earthquake signatures from GRACE geoid products. Using a wavelet analysis of GRACE geoids products, we show that the geoid variations caused by the 2004 December ( M w= 9.2) and 2005 March ( M w= 8.7) Sumatra earthquakes can be detected. At GRACE resolution, the 2004 December earthquake produced a strong coseismic decrease of the gravity field in the Andaman Sea, followed by relaxation in the area affected by both the Andaman 2004 and the Nias 2005 earthquakes. We find two characteristic timescales for the relaxation, with a fast variation occurring in the vicinity of the Central Andaman ridge. We discuss our coseismic observations in terms of density changes of crustal and upper-mantle rocks, and of the vertical displacements in the Andaman Sea. We interpret the post-seismic signal in terms of the viscoelastic response of the Earth's mantle. The transient component of the relaxation may indicate the presence of hot, viscous material beneath the active Central Andaman Basin.  相似文献   
6.
The food web structure and functioning of two north-western Mediterranean lagoons exhibiting contrasting degrees of eutrophication and marine influences were compared through δ13C and δ15N analysis of major potential food sources and consumers. The Lapalme Lagoon is well preserved and has kept a natural and temporary connection with the open sea. Conversely, the Canet Lagoon is heavily eutrophicated and its water exchange with the open sea has been artificially reduced. In Lapalme, all potential food sources and consumers exhibited δ15N values indicative of pristine coastal areas. Suspended particulate organic matter (POM) and sediment organic matter (SOM) pools seemed to constitute the main food sources of most primary consumers. Both primary producers and all consumers were much more 15N-enriched (by  10‰) and more 13C-depleted in Canet than in Lapalme. This reflected: (1) the assimilation of important amounts of anthropogenic nitrogen in the food web, and (2) a marked and uniform influence of 13C-depleted allochtonous sources of carbon. Based on the mean δ15N of primary consumers, we found rather similar food web lengths in both lagoons with top consumers at trophic levels 3.6 and 4.0 in Canet and Lapalme, respectively. However, the eutrophication of the Canet Lagoon resulted in a simplification of the food web structure (i.e., a single trophic pathway from a 15N-enriched fraction of the SOM pool to top predators) compared to what was observed in Lapalme Lagoon where additional 13C-enriched food sources played a significant trophic role. Moreover, some consumers of Canet tended to exploit primary producers to a larger extent (and thus to exhibit lower trophic levels) than in Lapalme.  相似文献   
7.
This study aims to provide knowledge on the thermo-mechanical behaviour of heat exchanger piles, through a laboratory scale model. The model pile (20 mm in external diameter) was embedded in dry sand. The behaviour of the axially loaded pile under thermal cycles was investigated. After applying the axial load on the pile head, the pile temperature was varied between 5 and 30 °C. Seven tests, corresponding to various axial loads ranging from 0 to 70 % of the pile estimated bearing capacity, were performed. The results on pile head displacement show that heating under low axial load induced heave and cooling induced settlement; the pile temperature-displacement curve was found to be reversible and compatible with the thermal expansion curve of the pile. However, at higher axial loads, irreversible settlement of the pile head was observed after a few thermal cycles. The axial load profile measured by the strain gauges evidenced that the pile head load was mainly transferred to the pile toe. Nevertheless, thermal cycles modified significantly the mobilised skin friction along the pile. The total pressure measured at various locations in the soil mass was also slightly influenced by the thermal cycles.  相似文献   
8.
Hydrogeology Journal - An extensive network of multilevel vibrating-wire piezometers (VWP) was recently created to monitor the spatial and temporal variation of pore pressure (and hydraulic head)...  相似文献   
9.
We investigate the ability of modern general circulation models (GCMs) to simulate transport in the martian atmosphere using measurements of argon as a proxy for the transport processes. Argon provides the simplest measure of transport as it is a noble gas with no sinks or sources on seasonal timescales. Variations in argon result solely from ‘freeze distillation’, as the atmosphere condenses at the winter poles, and from atmospheric transport. Comparison of all previously published models when rescaled to a common definition of the argon enhancement factor (EF) suggest that models generally do a poor job in predicting the peak enhancement in southern winter over the winter pole – the time when the capability of the model transport approaches are most severely tested. Despite observed peak EF values of ~6, previously published model predictions peaked at EF values of only 2–3. We introduce a new GCM that provides a better treatment of mass conservation within the dynamical core, includes more sophisticated tracer transport approaches, and utilizes a cube–sphere grid structure thus avoiding the grid-point convergence problem at the pole that exists for most current Mars GCMs. We describe this model – the Ashima Research/Massachusetts Institute of Technology Mars General Circulation Model (Ashima/MIT Mars GCM) and use it to demonstrate the significant sensitivity of peak EF to the choices of transport approach for both tracers and heat. We obtain a peak EF of 4.75 which, while over 50% higher than any prior model, remains well short of the observed value. We show that the polar EF value in winter is primarily determined by the competition between two processes: (1) mean meridional import of lower-latitude air not enriched in argon and (2) the leakage of enriched argon out of the polar column by eddies in the lowest atmospheric levels. We suggest possibilities for improving GCM representation of the CO2 cycle and the general circulation that may further improve the simulation of the argon cycle. We conclude that current GCMs may be insufficient for detailed simulation of transport-sensitive problems like the water cycle and potentially also the dust cycle.  相似文献   
10.

Numerical simulations of groundwater flow and heat transport are used to provide insight into the interaction between shallow groundwater flow and thermal dynamics related to permafrost thaw and thaw settlement at the Iqaluit Airport taxiway, Nunavut, Canada. A conceptual model is first developed for the site and a corresponding two-dimensional numerical model is calibrated to the observed ground temperatures. Future climate-warming impacts on the thermal regime and flow system are then simulated based on climate scenarios proposed by the Intergovernmental Panel on Climate Change (IPCC). Under climate warming, surface snow cover is identified as the leading factor affecting permafrost degradation, including its role in increasing the sensitivity of permafrost degradation to changes in various hydrogeological factors. In this case, advective heat transport plays a relatively minor, but non-negligible, role compared to conductive heat transport, due to the significant extent of low-permeability soil close to surface. Conductive heat transport, which is strongly affected by the surface snow layer, controls the release of unfrozen water and the depth of the active layer as well as the magnitude of thaw settlement and frost heave. Under the warmest climate-warming scenario with an average annual temperature increase of 3.23 °C for the period of 2011–2100, the simulations suggest that the maximum depth of the active layer will increase from 2 m in 2012 to 8.8 m in 2100 and, over the same time period, thaw settlement along the airport taxiway will increase from 0.11 m to at least 0.17 m.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号